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In this paper, two model tunneling junctions are studied. In the first model, a single mag-
netic impurity is assumed to be present near a sharp metal-barrier interface. In the second,
phonons with a single Einstein frequency are assumed to exist throughout one electrode and
into the barrier region. The effect of the electron-spin (phonon) interaction onthe conductance
has been calculated. It is found that the zero-bias conductance anomaly produced by the mag-
netic impurity in model I is a sensitive function of the magnetic-impurity position, being of one
sign in the barrier and oscillating in the electrode. In model II, we find, contrary to what
had been believed that, when the phonons are strictly confined to the metal electrode and a
local electron-phonon coupling is assumed, the conductance decreases at the phonon emission
threshold. This decrease quickly becomes an increase, however, if the phonons are allowed

to penetrate significantly into the barrier.

1. INTRODUCTION

Tunneling has served as a powerful probe of
the superconducting properties of metals, giving
us direct information about the bulk spectral
function of the superconductor.! It has been
hoped that similar information about many-body
interactions other than superconductivity could
be obtained by studying normal metal tunneling.

There is, however, a crucial difference be-
tween superconductivity and other many-body ef-
fects, namely, the long coherence length of the
superconductor, typically hundreds or thousands
of Fermi wavelengths. We presently know that
tunneling measures the spectral function of the
electrode in the vicinity of the metal-barrier in-
terface.? Inthe case where the metal is super-
conducting, this spectral function is determined
by what goes on within a coherence length., Since
this coherence length is many times larger than
the range over which the metal-insulator boundary
modifies the electronic wave functions, it is not
at all surprising that the spectral function at the
interface should still reflect what is going on in
the bulk of the superconductor. It is this extreme-
1y nonlocal behavior which has made tunneling
into superconductors such a remarkable tool.

In the case of normal metals, the effective
range of the many-body interactions are typically
Fermi wavelengths, quite comparable to the range
of disturbance due to the metal-barrier interface,
and the spectral function in the vicinity of this
interface is greatly influenced by boundary effects.
Another area where these boundary effects play
a striking role is in the study of tunnel junctions
whose insulating barrier has been doped, inten-
tionally or otherwise, with impurities. It is the
purpose of this paper to examine these interface

o

effects by presenting two model calculations
based on the recent theory of many-body tunnel-
ing proposed by the authors? and independently,
by Zawadowski.?

The first model junction we will consider con-
sists of an ideal symmetric tunnel junction, with
a rectangular barrier, in which a magnetic im-
purity is assumed to be located in the vicinity of
one of the electrode-barrier interfaces. While
this problem has been considered by other au-
thors, *~® the purpose of the present calculation,
done in Sec. II, will be to study the dependence
of the conductance on the position of the impurity.
We will find that this dependence is rather dra-
matic, with the change in the conductance result-
ing from the impurity changing sign as it moves
from the barrier into the electrode.

The second model junction, studied in Sec. I,
is similar to that described above, except the
magnetic impurity is replaced by a uniform dis-
tribution of Einstein phonons throughout one of
the electrodes and extending into the barrier.
The electrons are assumed coupled to the phonon
via a deformation-type coupling andthe dependence
of the conductance on phonon penetration into the
barrier is studied.

Section IV is devoted to a discussion of the
models, and a number of possible experiments
are suggested to reveal interface effects.

II. MAGNETICALLY DOPED TUNNELING JUNCTION
We consider a single magnetic impurity in a
tunneling junction as shown in Fig. 1. The mag-
netic impurity is shown at position 2, in the in-
sulating barrier, but we also consider the case
when it is present in the A electrode. Note that

metal-barrier interface is assumed sharp.

The interaction between the electron and local
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FIG. 1. The type barrier considered in text. The
spin impurity is located at z,. The surface on which
the current is calculated is located at Z.

spin is taken to be of the form
-3J8(F~Tg)S 0; T4=(0,0,2¢) ,

where J is the exchange coupling constant for lo-
cal spins S and ¢ the electron Pauh matrix.

The formula for the current, > generalized to
finite temperature, is given by (in units where 7
=1, 2m=1, with m the electron mass)
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where G®D) (r,#'; w) are the Green’s function for
the left- and right-hand problems.”® Current is
defined as positive when a voltage V is applied to
the left electrode. Equation (2.2) is also the
starting point of the work of Sélyom and Zawadow-
ski® on this problem. However, our subsequent
approximations are quite different and lead to
qualitatively different results.

The decomposition of the tunnel junction into
left- and right-hand problems, as discussed pre-
viously by the authors,  is shown in Fig. 2. In
the decomposition we have assumed that the mag-
netic impurity is always much closer to the left
electrode than the right, so that its interaction
with the right electrode could be ignored. This
means that Z, the point at which the Green’s func-
tions in Eq. (2.2) are evaluated, should be taken
to the right of z,, the site of the magnetic impur-
ity.
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The Hamiltonian for the left-hand problem is

$p=PP+V,(2)-3J5-Go6(F-Tp) , (2.3)
where V. (2)=0, z<-b
(2.4)
Vpy(z)=U, z>-b ;
while Hp=Pl+Vg(z) , (2.5)
Va2)=U, z<b
“ ’ (2.6)
Vi&)=0, z>b

The Green’s function, G*(¥’, T; w), for the
right-hand problem is a solution of equation

[w=p? = V)] GHF', T;w) = 6(F ~F)/27 . (2.7)
By writing G%(F’,T; w) as
GHF',T; w) =[1/(2m)?]

x [ et - fGRE! 2:%; w)d%, ,(2.8)

the equation for G¥z’, z; El,' w) becomes

4
-Vl G, 25T ) - HEE)

(2.9)

d2
< w—€g + dz"?

Equation (2.9) is easily solved, and one finds
GHz', z;k,; w) = (1/47k)

X[e 2214 (k+ ik (k ~ik)) &2 "% 2] (2,10)
for (2,2’ <b), where
(2.11)

The Green’s function GE(¥,¥'; w) for the right-
hand side, needless to say, is not so easily ob-
tained. We will be interested in G¥ only to third
order in J, in which case

G, T3 w)= 6§ (F, '; w)
+GO (’ r()! (U) t(r(], (/J)GL(;O”' Cl)) E) (2- 12)

where #(Fy, w)= — (1)? B(Ty; @) [1 - TJA(Fg; w)],
(2.13)

=(U-w+eg)? k=(w-g)? .

AFy; )= [ d&- GE(Fy, X; 0)

N
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FIG. 2. Breakup of the problem into left- and right-
hand problems. The impurity at z, is considered only
in the left-hand problem.
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X[ (UL F) ¥, R ) - 6~ )] (2. 14)
B(fy; )= [ dX- G} (Fo, %; )
X[ Gy SU! F) ¥y ®) Y-S +1)0(F, -] . (2.15)

In the above, the subscript 0 indicates the quantity
is evaluated to lowest nonvanishing order in J.
The spin labels #, u’ are assumed summed over.
GE (7, T'; w) satisfies the equation
[w=p% -V, (2)] GE(F,F'; w) = 6(F -F')/2m, (2.16)

from which one obtains

GEE, 7' w)=[1/(20)?] [dRie” " = FIGE(z, 2" Ky )
(2.17)
with
Gi(z,2";ky; w)= = (1/47K)
X[e M=V sk + ik (K —ik)e” He*F 2] 1 (2,18)

for z,z'>-b with k and % defined by Eq. (2.11).

If Eqs. (2.12) and (2. 8) are substituted into Eq.
(2.2), and the integral over T, and T{ performed,
one finds

I= 81re_[_: fdwdw'[f(w) —f(w)] 6(w+eV —w’)
X f[dzkl /(211)2][ ImGE (Z,z; Ky w)

2
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+permutations of < 52’ 5,—) ] , (2.19)

where I is the current density flowing in the tun-

nel junction. Substituting for G, the unperturbed
Green’s function leads to the usual expression for
the current density in the absence of any interac-
tions.

We proceed now to calculate AI, the change in
the current due to the magnetic impurity. Using
Egs. (2.10), (2.12), and (2.18), and taking the
spatial derivatives, one finds

aT=8ne [ [ dwdw'[ flw) =f(w")]5(w +eV - w’)

x [ [d%./(2m)?] (k1 + k *{IMGE(Z, Z; 0 — €g)

XIm[G§ (2, 20; @' — €5,)GF (20, Z; 0 = €5 )t (Fo, @)},

(2.20)

where kg =(U+3eV —w’+€p)t/%
’ \ K (2.21)

KR:(U+%eV—-w+e,;l)“2 .

Note that we have included in Kz, z) the change in
the average barrier height with voltage. This is
necessary to ensure that k=« z.
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We now need to perform the kK, integration in
Eq. (2.20). The dominant variation of the inte-
grand with respect to i:l is contained in the factor
exp[-4b(U - seV — w'+ €, )], so that toa high de-
gree of accuracy we can set € =0 everywhere in
the integrand except the exponent ® Doing this one
finds

AT:%e— I i J dwdw'[ f(w) —f(w")]6(w +eV = w’)k®
x{ImG¥§(z, z; w)Im[GL (2, 20; WNE@y; W)} . (2.22)

The conductance due to the magnetic impurity
AG(V)=0AI/3V is easily shown to be
AG(V) = (4€%/b) k*ImG{(Z, Z; €5)

XIm[GE(Z, zo; €5 + V)t (Fg, €V +€5)] . (2.23)

Having arrived at Eq. (2.23), we now need an
expression for #(Ty, w). It is a simple matter to
verify that to order J°

t(Fo; @) = (m)?S(S +1)GE (o, To; @)
= (1)’ (S + 1)G§ G, Tp; @) (2/7)
x flav'[2f(e") - 4]
XIMGE (Fg, To; 0’ +i6) Aw’ ~w —i8)}
+(m)’S(S +1)(2/7)
x [ [dw'f(w ) w' - @

XImGE(F o, To; w’ +140).

~8)]

(2.24)

As 1t stands, G% (T, To; @) is not defined, since
the k, integration in Eq. (2.17) does not converge.
This results from our use of a d-function ex-
change interaction and necess1tates the introduc-
tion of an energy cutoff on the k,_ integration in
Eq. (2.8). In the calculations to be presented we
set the cutoff at the Fermi energy. The essential
features of the results will be insensitive to this
cutoff.

Now the largest contribution to AG(V) comes
from the J% term in #(fy, w). This term is insen-
sitive to temperature and voltage and has the ef-
fect of shifting the background conductance. Its
importance, as Appelbaum* has shown, stems
from the fact that in a magnetic field it becomes
strongly temperature and voltage dependent, and
thereby, easily identified.

Our interest here in the term will be to study
its dependence on the position of the magnetic
impurity in the junction.

The local Green’s function at T, is easily shown
to be
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2 ~ ~ ~
ImGy'(Z; @) MGy (2, 205 @) = = [k %™ ***/(2m)* ]

X[1+ (k2 -k2)e *], A>0 (2.27)

where k=(1-w)/? k=w!/?

It becomes immediately clear that AG will be
an oscillating function of position when present in
the electrode and of one sign when in the barrier.
(It is in fact possible for AG to change sign in the
barrier, when this occurs, however, it does so
very close to the electrode-barrier interface.)

In Fig. 3 we have plotted AG(V=0) as a func-
tion of A, confirming the behavior implied by
Eqgs. (2.26) and (2. 27).

Turning now to the third-order contributions,
we isolate the term containing the dominant volt-
age and temperature dependence:

Imt*(ry, w)=(2nJ)*;S(S +1) ImG§ (vy, w)
x [ [ f(@') ~3]ImGE (Fy, w') dw’ /(w0 = w).

This term* accounts for the zero-bias conductance
anomalies found in certain magnetically doped
tunnel junctions. The voltage and temperature
dependence of the conductance resulting from

this term is In[(eV)?+ (% 3T)?]/E%, where E, is a

2 (2mu)V2(z4+b)

FIG. 3. Excess conductance at zero bias resulting
from the magnetic impurity calculated to order J 20 and
plotted versus the impurity position.

cutoff parameter.

In Fig. 4 we have plotted the position-dependent
coefficient of the logarithmic term in AG. Note
once again the oscillatory behavior of AG in the
electrode.

III. TUNNELING JUNCTION WITH EINSTEIN PHONONS

We now consider the model in which the elec-
trons are coupled to a set of phonons all of the
same frequency wg. Calculations are performed
for two situations: (i) The phonons exist and
are coupled to the electrons in metal A (Fig. 1)
and do not extend into the barrier; and (ii) the
phonons exist and are coupled to the electrons
throughout metal A and through barrier up to
metal B, This latter case is certainly pathologi-
cal as there are large changes in the phonon
spectrum from a metal to an oxide. However,
comparing these two calculations illustrates the
essential difference between the effects of inelas-
tic scattering off excitations in the bulk of an
electrode and that of inelastic scattering off ex-
citations in the barrier itself. The Hamiltonian
describing the electron-phonon interaction is

g ~dre@®Y@ELE , (3.1)
z2< 2y

where z, is either +b as discussed above and
@ (T) is the phonon field operator. We treat this
interaction in second-order perturbation theory.
This approximation was justified by Migdal even
for strong coupling for situations where one is
interested in the frequency dependences of various
quantities. However, we are looking at effects
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FIG. 4. The coefficient of the logarithmic singularity
in the third-order contribution to the conductance due to
the scattering from the spin impurity as a function of
distance.

which are due to momentum dependences and
Migdal’s justification does not apply. Our results
are therefore justified only for weak coupling. To
this order,

- >,

G*F, T w)= GE(, 75 0) + [ v

X <z
X G, T w)s( 25 w) GEE", T w),
(3.2)
with
2

(sz(z)

3
Z(z; w)=g2f éTslj

«(ALe, fa

W=-€p—-wg +w—€;+wE> - (3.3)

The ¢,,(2) are the solutions of the Schrodinger
equation for the unperturbed lgft-hand problem
(Fig. 2). The integrals over k, can be performed

and one finds the resulting expression to be essen-

tially described by

E(Z, w)ggzp(z’ EF)ln[(w - €F _wE)/(w - EF +wE)] 3
(3.4)

where p(z, €)= "7 [dk,/(21] |0, (2)|*  (3.5)

is the local density of states at the Fermi surface.
The form Eq. (3.2) is similar to Eq. (2.12) with
the self-energy replacing the ¢ matrix except for
the integration over ¥'’. . The reasoning that went
into the derivation of Eq. (2.23) can be repeated
so that the change in conductance can be written
as

AG(V) = (422/b) k*ImG{(Z, Z; € )
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2
XIm[f_'f dzG§ (Z,2;€p+eV)S(z, €5 +eV)] .
(3.6)

There is no significant voltage dependence in
G({‘Z(E, 2; €p+eV) so that it can be set equal to its
value at €;. The voltage dependence of AG(V) thus
arises entirely from the self-energy. There are
two contributions. The contribution from the

Im¥ is even with respect to voltage and is simply
a step at + w . The contribution from ReZ is odd
with respect to voltage and is logarithmically sin-
gular at +wg. The two functions are illustrated
in Fig. 5. We are interested in the magnitude and
more importantly the sign of the coefficient of
these functions for the two cases mentioned at the
beginning of this section. Thus let AG, denote the
magnitude of the step in the conductance arising
from Im¥ and AG,qq the coefficient of the loga-
rithm.

For case A when the phonons exist only in the
left electrode we might to a first approximation
assume that p(z, €7) is a constant up to the barrier
equal to p(—=, €z). The integral over z can then
be performed and one finds

AG,/G= - (g%/am)(1 - k%) /2 | (3.7
AG,4y/G’= - (g/87%p) (1 — 2£2) . (3.8)

Here we have again set U=1. Note that the sign
of AG, is negative, that is, there is a drop in
conductance. This result can be understood by
realizing that for energies above wj the electrons

d1
dVieven
-wg wWEg eV
dI

| dViodd

|

! e
—w eV

m
O Y -3

FIG. 5. The form of the contribution to the even and
odd parts of the conductance due to the electron phonon
interaction.
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are tunneling into a dissipative medium (electrode
A) so that the reflection coefficient at the elec-
trode-barrier interface increases. The functions
(3.7), (3.8) areplotted in Figs. 7and 8, respectively,
[curves (a)]. Forthis simple form of the self-en-
ergy, i.e., with p(z, €z)=p(~=»,Gp) in (3.4), one
can solve the Dyson equations exactly. Using the
resulting Green’s function an analytic expression
can be obtained for the current and (3. 7),(3. 8) can
be obtained by expanding in powers of ¥ over K
or k,. The use of Eq. (3.2) is therefore a good
approximation except for energies near the top or
bottom of the barrier. The result obtained by
not expanding G in powers of ¥ has been previously
obtained by Davis.!® His approach to the problem
does not include the imaginary part of the self-
energy. An expansion of his result leads to Eq.
(3.8) while Eq. (3.7) is omitted.

The actual density of states calculated in this
model has Friedel oscillations near the surface
of the metal and drops smoothly to zero in the
barrier (Fig. 6). If we use this density in the
above calculation the integrals become more com=~
plicated :

AGe/GU=(g2/27rk,.-)f_beo dz"’ cos2[kp(2'’ +b) —cp,,F]
XfokF sinf[k(z +b) - @,] , (3.9)
AGoas/Go=&%/20%z) [ 2"’ sin2lke(e’” +5) — 0y |
x fo’”'" sinfk(z +b) - @ ]dk .  (3.10)

Here e’r= (k +ik). These integrals can be worked
out analytically and the results are plotted in
Figs. 7 and 8, curves (b). The integral (3.10)

is actually logarithmically divergent because one

0.6 .

pP(Z,€¢) /p(-o,€p)

1

~-10 -5 [o] 5
2 (2mU)2 (z4b)

FIG. 6. The electron density near the barrier. We
have taken €p/U=0.8.
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FIG. 7. The coefficient of the step in the even con-
ductance for various approximations discussed in the
text as a function of €5/ U.

is considering scattering off a potential, ReZ(z, w),
which oscillates with wave vector 2k,. It is
easily seen that this divergence results from the
simplications we have made in deriving Eq. (3. 6)
and that in a more correct treatment the logarithm
is actually averaged over energies of the order

of the width of allowed values of EL and is also
reduced by the fact that we are considering ener-
gies € p+ wp which we earlier set equal to € .
Both effects lead to comparable smearing of the
singularity so we replace the singular term by
In(w./4€;) 5. Note that the coefficient AG,

of the step function at wy is still always negative.

1.5F (b)
1L.of
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3
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FIG. 8. The coefficient of the logarithmic singularity
In{(eV~ wg)/(eV+wg)] for various approximations dis-
cussed in text.,
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From this result it seems quite unlikely that one
obtains anything like assisted processes due to
bulk metal phonons unless either the phonons ex-
tend into the barrier region itself or the coupling
constant is sufficiently nonlocal so that the elec-
trons seethe metal ion motion in the barrier re-
gion. To illustrate the effect of the extension of
the phonons into the barrier we consider the case
where the phonons exist throughout the barrier
as well as in metal A. The integration over z in
Eq. (3.6) can be again carried out, however, the
approximation of setting Eﬁ 0 everywhere except
in the exponent is no longer valid for calculating
AG,. 1t is true that the electron must have es-
sentially all of its momentum perpendicular to the
barrier to tunnel but since the phonons exist
throughout the barrier it may adrilit a phonon be-
fore or after it tunnels. Setting k, =0 does not
allow for the former process, since in this case
it is the final wave vector which must be per-
pendicular to the barrier. A closer examination
of the integrals involved reveals that this effect
can be taken into account by simply multiplying
by 2 the term describing the process in which
the electron goes directly through the barrier
emitting a phonon without any reflections at the
interfaces. One thus obtains for the contributions
from the barrier region

AG /G=(g%/81) (1/k%;z) [ ”b dz{2e2K#+
+ z(KZ - kZ) +[(K2 - k2)2 - 4K2k2]e- 2k(Z + b)}

r
xfo P dp, pRe 2K e (3.11)

AG,44/G = - (g%/27%) fbb [1+e7 2"+ D (2 _p2)] gz

Xfokr db'p' 2™ 2 (£ +D) (3.12)

The results of doing these integrals have been
added to the contributions from the bulk and the
total coefficients are plotted against €z/U in
Figs. 7 and 8, curves (c). As one can see the
contribution from the barrier region dominates
that from the bulk so that in this example the ex-
tra conductance will usually be predominantly of
the assisted type.

1IV. CONCLUSIONS

Several remarks regarding the relationship of
the preceding calculations to experiment and pre-
vious calculations!~® are in order. We will con-
sider first the magnetic impurity calculation.
There have been a number of different theoretical
calculations for this problem. Appelbaum, % using
the tunneling Hamiltonian, calculated the current
which flowed in the extra tunneling channel which
he assumed was opened up by the magnetic im-

purity. This led to a conductance increase in
order Jz, clearly independent of the sign of J,
which manifested itself experimentally in a de-
crease!'» 2 in conductance in the presence of an
applied magnetic field. In third order Appelbaum
(A) predicted a “zero-bias conductance peak” for
J >0, a dip for J<0. This calculation was ex-
tended by Appelbaum, Phillips, and Tzoura’®
(APT) who showed, again using the tunneling
Hamiltonian, that there are two contributions to
the tunneling current, one which came from the
extra channel opened by the impurity, as calcu-
lated by Appelbaum, * the second, identified as a
local self-energy effect, led to a decrease in
conductance to order J% and a “zero-bias conduc-
tance peak” for J <0, a dip for J>0. This second
term was derived first using a Green’s function
formalism by Sélyom and Zawadowski. The
method they used is the same as that used in this
paper.

SSlyom and Zawadowski® drew a number of con-
clusions from their calculation. First, that to
second order the conductance was always sup-
pressed by a magnetic impurity. Second, they
argued that the only way A and APT could obtain
an enhanced conductance was from a nonlocal ex-
change interaction, one not assumed by A or APT.
A third conclusion, really a consequence of the
first, was that a conductance peak was obtained
for J >0, a dip for J <0, which is opposite to that
predicted by Appelbaum.

The results of the present calculation basically
confirm those of Appelbaum. We find that when
the magnetic impurity sits in the barrier region
this leads to an enhancement of the tunneling cur-
rent to order J?, and a zero-bias conductance
peak for J <0, Sdlyom and Zawadowski (SZ) ob-
tain results opposite to those reported here be-
cause they failed to retain the real part of the un-
perturbed Green’s function in their solution of
Dyson’s equation.

As the position of the impurity moves into the
electrode region the forward and back scattering
resulting from the impurity become comparable.
This results in rapid (on the scale of 1/k5) spatial
oscillation of the sign of the conductance change
resulting from the magnetic scattering. The
presence of spatial oscillations is contained in the
work of SZ, but they erroneously argued that they
are on a much longer scale than 1/k;, and there-
fore ignored them.

The implications of these results for experiment
are as follows. With respect to the J2 terms,
magnetic impurities introduced into the barrier
region result in an enhanced conductance mani-
fested by a depression of conductance in a mag-
netic field. '’ For magnetic impurities intro-
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duced into the electrode there may be a sizable
reduction in the effect of these impurities on the
conductance because of the cancellation among
the impurities resulting from the spatial oscilla-
tions AG, the conductance charge due to a single
impurity, as shown in Fig. 3. In those cases
where the impurities are introduced randomly
with respect to the oxide-metal interface the
dominance of the barrier impurities in order J2
will result in these tunnel junction exhibiting a
characteristic negative magnetoresistance. If
the impurities could be confined to the electrode
region a rather novel positive magnetoresistance,
as yet unobserved, could be expected.

The sign of the logarithmic conductance anomaly
in third order is shown in Fig. 4. Once again,
for impurities confined to the oxide barrier a
conductance peak for J <0 is expected. For the
case where the impurities are distributed ran-
domly with respect to the interface, the sign of
the effect is determined by a delicate balance be-
tween the barrier and electrode impurities. Un-
like the J2 term, the J° terms drop off rapidly
with distance into the barrier, and therefore the
barrier impurities do not exercise the dominant
role in the logarithmic anomaly that they do in the
magnetoresistance effect. This fact must be
kept in mind when attempting to extract informa-
tion about the size of J from the ratio of the loga-
rithmic conductance anomaly to the magnetore-
sistance effect.

In the calculations of Sec. III for the electron-
phonon coupled system it is clear that the exact
nature of the metal-oxide interface plays an es-
sential role in determining the characteristics of
the many-body corrections to the tunneling cur-
rent. However, the calculations do indicate that
if the phonons exist only in the electrode and the
electron-phonon interaction is local, one will ob-
tain an increase in the even part of the resistance
at the characteristic phonon frequencies of the
bulk material. If, however, the phonons exist
in the barrier, an increased even conductance is
expected. Experimentally, *~'% a number of
junctions have been found in which the conductance
anomalously increases at voltages equal to the
positions of the peaks in the bulk metal phonon
density of states. Assuming a local interaction

N

we can only explain these results if the metal
phonons extend into the barrier region. However,
it is quite unlikely that the electron-phonon in-
teraction can be considered to be local. In fact
one might expect it to be particularly nonlocal
near the metal barrier interface where screening
by the conduction electrons becomes less effec-
tive. In this case we believe the assisted pro-
cesses in the barrier will again dominate the cur~
rent although we have not attempted to construct
a model including the nonlocal character of the
electron-phonon interaction. The model consid-
ered above is the same as that treated by Davis
and Duke!® for a semiconductor using the tunnel-
ing Hamiltonian approach and, more recently, by
Davis.!® They consider the effect of the bulk
self-energy on the conductance. If we use the
form for the tunneling matrix element, derived

in the WKB approximation in Ref. 2 and include
only the self-energy effects, we obtain Egs.

(3.7), (3.8). Davis, inhis calculations, does not in-
clude the imaginary part of the self-energy and
his result corresponds to Eq. (3.8). The Davis
and Duke result is different in that they take the
tunneling matrix element to be a constant. Their
calculations, therefore, gives both the even and
odd contributions to the current but the coefficients
of these two terms differ considerably from Eqgs.
(3.7), (3.8). Theambiguities Davis and Duke dis-~
cussed in using the tunneling Hamiltonian are not
present in our calculations.

In conclusion, we believe that the calculations
in Secs. IIT and IV clearly illustrate the useful-
ness of our approach to tunneling: In the case
of the magnetic impurity it has allowed us to ob-
tain a more fundamental picture of the effect and
thereby eliminating a number of parameters in the
original theory. For the magnetic impurity prob-
lem as well as for the electron-phonon interaction
the approach exhibits clearly the spatial depen-
dence of the various contributions to the current.
Furthermore, it eliminates the necessity of di-
viding many-body effects into assisted processes
and self-energy corrections as is done when the
tunneling Hamiltonian approach is used. This
division can still be made for interactions deep in
the barrier but it is not useful for studying inter-
face effects.
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The static dielectric function is studied for a transition metal on the basis of a model band

structure with noninteracting s and 4 bands.

The free-electron approximation is used for

electrons in the s band, while a simplified tight~binding scheme is used for the d electrons.
Explicit expressions are obtained for the intraband and interband contributions to the dielec-
tric function. The model is applied to calculate the static dielectric function for paramagnetic
nickel for (3d)° (4s)! and (3d)®* (4s)° configurations along the three principal symmetry di-
rections [100], [110], and [111]. The contributions due to the intraband and interband transi-
tions are compared: It is found that the major contribution to the dielectric function is due to

the intraband transitions.

I. INTRODUCTION

The response of a many-electron system to an
external perturbation can be discussed in terms
of the frequency and wave-number-dependent di-
electric function €(q, w).! Here q is the wave
number and w is the frequency. Noziéres and
Pines? and Ehrenreich and Cohen® deduced explicit
expressions for the longitudinal component of the
dielectric tensor within the random-phase approxi-
mation, and they did not consider the local field
effects. Adler? deduced an integral equation for
the generalized dielectric tensor, including local
field effects, and discussed some limiting cases
of the general expression. When we are dealing
with a system of nearly free electrons, the com-
plex expression for the dielectric function reduces
to a simple form. There have been attempts at
evaluation of the dielectric function for semicon-
ductors, *7 but because of the difficulties intro-

duced by the presence of d electrons, not much
work has been done on the problem of dielectric
screening in the transition metals. Recently,
Hayashi and Shimizu® studied the dielectric screen-
ing in a transition metal. They considered two
models, first a single-band model for d electrons
and then a two-band model for s- and d-band elec-
trons. They did not consider explicitely the con-
tribution from the interband transitions.

In this paper, an explicit expression for the
longitudinal component of the static dielectric ten-
sor for a transition metal is deduced. The form-
alism, presented in Sec. II, is applied to the spe-
cific case of paramagnetic nickel in Sec. III. The
results are discussed in Sec. IV.

II. THEORY

The general expression for the longitudinal
static dielectric matrix in the random-phase ap-
proximation is®



